Math 10A
Quiz 6; Tuesday, 7/17/2018
Time: 3 PM
Instructor: Roy Zhao
Name:

Circle True or False. (1 point for correct answer, 0 if incorrect)

1. True FALSE We can tell whether the midpoint rule approximating is an over or underestimating by looking at the first derivative.

Solution: We need to look at the second derivative.
2. TRUE False Using Simpson's method will always give the exact answer when integrating a quadratic equation.

Solution: For a quadratic equation, $K_{4}=0$ so there is no error.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (4 points) Approximate $\int_{-\pi}^{\pi} \cos (x) d x$ using the Trapezoid rule with $n=$ 4 trapezoids. (Simplify your answer)

Solution: First we find $\Delta x=\frac{\pi-(-\pi)}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}$. Using the formula, the area using Trapezoid rule is:

$$
\frac{\pi / 2}{2}(\cos (-\pi)+2 \cos (-\pi / 2)+2 \cos (0)+2 \cos (\pi / 2)+\cos (\pi))=\frac{\pi}{4}(-1+0+2+0+-1)=0
$$

(b) (3 points) What is the maximum error in the previous estimation?

Solution: The maximum error is $\frac{K_{2}(b-a)^{3}}{12 n^{2}}$. The second derivative is $-\cos (x)$ and the maximum of $\left|f^{\prime \prime}(x)\right|=|-\cos (x)|$ is 1 so $K_{2} 3=1$. So the error is

$$
\frac{1 \cdot(\pi-(-\pi))^{3}}{12 \cdot 4^{2}}=\frac{8 \pi^{3}}{12 \cdot 16}=\frac{\pi^{3}}{24}
$$

(c) (3 points) What is the smallest number of intervals n you need to use in order to guarantee that the trapezoid approximation of $\int_{0}^{1} \frac{x^{3}}{6} d x$ is within $\frac{1}{12 \cdot 101}$.

Solution: First we need to calculate $K_{2}=\max _{[0,1]}\left|\left(\frac{x^{3}}{6}\right)^{\prime \prime}\right|$. The first derivative is $\frac{x^{2}}{2}$ and the second is x so the maximum of the absolute value is at $x=1$ since the function x is always increasing. Therefore, $K_{2}=1$. Thus, we have that

$$
\frac{1}{12 \cdot 101}=\frac{1(1-0)^{3}}{12 n^{2}} \Longrightarrow n^{2}=\frac{12 \cdot 101}{12}=101 .
$$

Therefore $n=\sqrt{101}$. But, we want the smallest number of intervals and so we need to take the ceiling. The ceiling of $\sqrt{101}$ is 11 so $N=11$.

